| Power Consumption(W) = Voltage(V) X Current(I) W= Max Watt |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Electric Energy (J) = Voltage (V) $\times$ Current ( 1 ) $\times$ Time (sec) |  |  |  |  |  |  |  |  |  |
| Heat Energy (cal) $=$ Voltage (V) $\times$ Current $(1) \times$ Time $\times 0.24$ (1cal $=4.2 \mathrm{~J}$ ) |  |  |  |  |  |  |  |  |  |
| Power Consumption= | V | X | 1 | = |  | W |  |  |  |
| Electric Energy = | V | X | 1 | X | T | = |  | $J$ (1hr Operation |  |
| Heat Energy = | V | X | । | X | T | X |  | $(1 \mathrm{~J}=0.24 \mathrm{cal})=$ | cal |
| * 4260 Model(Max Heat Energy) |  |  |  |  |  |  |  |  |  |
| Power Consumption= | 220 | X | 1.63 | $=$ | 358.6 | W |  |  |  |
| Electric Energy = | 220 | X | 1.63 | X | 3600 | = | 1,290,960 | J |  |
| Heat Energy = | 220 | X | 1.63 | X | 3600 | X | 0.24 | $=309.83 \mathrm{kcal}$ |  |
| * 4260 Model(Average Heat Energy) |  |  |  |  |  |  |  |  |  |
| Power Consumption= | 220 | X | 0.91 | $=$ | 200 | W |  |  |  |
| Electric Energy = | 220 | X | 0.91 | X | 3600 | $=$ | 719,928 | J |  |
| Heat Energy = | 220 | X | 0.91 | X | 3600 | X | 0.24 | $=172.78 \mathrm{kcal}$ |  |

